
Introduction to Neural Networks
U. Minn. Psy 5038
Spring, 1998

Lecture 10

Non-linear models
The perceptron

Introduction to non-linear models
By definition, linear models have several limitations on the class of functions they can compute--they have to be linear.
However, as we have pointed out earlier, linear models provide an excellent foundation on which to build. On this
foundation, non-linear models have moved in several directions.

One way is to "augment" the richness of the input patterns with higher-order terms to form polynomial mappings, or non-
linear regression, as in a Taylor series (Poggio, 1979):

y = wi∑ f i

y = wi∑ f i + wi, j∑ f i f j

y = wi∑ f i+...+ wi1,...,in∑ f i1 f in
The challenge is to develop techniques to learn the weights, while at the same time avoiding over-fitting (i.e. using too
many weights). We'll talk more about this problem later.

Lateral inhibition can be generalized using products of input and output terms --"shunting" inhibition (Grossberg).

dyi
dt

= −αyi + (β − yi) f i − yi wij f j
i≠ j
∑

But the simplest thing we can do at this point is to use the generic connectionist neuron. Recall that this is an inner product
followed by a non-linear sigmoid. Once a non-linearity such as a sigmoid introduced, it makes sense to add more than
additional layers of neurons. Much of the modeling of human visual pattern discrimination has used just these "rules-of-the-
game".

Question: Why doesn't it make sense to add more layers of neurons if there are no non-linearities? (Hint: It is just a
question of matrix multiplication).

As the slope of the sigmoid increases, we approach a simple step non-linearity. The neuron then makes discrete (binary)
decisions. Recall the McCulloch-Pitts model of the 1940's. Let us look the Perceptron, an early example of a network built
on such threshold logic units.

Classification and the Perceptron

Terminology

You've seen this before, but we'll review it here again. Some terminology. Supervised learning refers to learning in which

there is a "teacher". We have a "training set" {fi,ti} representing inputs fi, and target outputs ti. The training set in some

sense "samples" the larger space of possible input/output pairs {f,t}. We would like to learning a general mapping: T: f ->
g in such a way that T is a good fit to the training data (i.e. g is close to t), and generalizes well to novel inputs. The set of
target data is the feedback for the"teacher". The feedback can say whether the mapping is correct or not. Or the feedback
can provide information as to how far off the map T's prediction of f (i.e. T[f]) is from t. After training, one can require that
T always maps members of the training set to exactly the target members, and generalizes appropriately for other inputs.
This means that the learning should be consistent. Interpolation is between data points on a graph is an example of
consistent learning. Or, we may require that the T maps the original members of the training set to outputs g, that are close
to the original targets t. Linear regression is a an example of approximation learning. The linear associator was our first
example of supervised learning.

In unsupervised learning, there is no specific information to say whether the output is correct or not. Instead other criteria
must be invoked to constrain how the network learns. For example, a network can learn an invertible mapping (or near
invertible) T: f -> g such that the vectors in the data set {g} have a smaller dimension.Versions of autoassociators can be
used as unsupervised algorithms.

Linear networks can be configured to be supervised or unsupervised learning devices. But linear mappings are severely
limited in what they can compute. The specific problem that we focus on in this lecture is that continuous linear mappings
don't make discrete decisions.

Pattern classification

One often runs into situations in which we have input patterns with enormous dimensionality, and whose elements are
perhaps continuous valued. What we would like to do is classify all members of a certain type. Suppose that f is a
representation of one of the following 10 input patterns,

{a, A, a, a, A, b, B, b, b, B }
a pattern classifier should make a decision about f as to whether it means "a" or "b", regardless of the font type, face or size.
In other words, we require a mapping T such that:

T: f -> {"a","b"}

As mentioned above, one of the simplest way of extending the linear neuron computing element is to include a step
threshold function in the tradition of McCulloch & Pitts--the earliest computational model of the neuron. This is special case
of the generic connectionist neuron model. With the step threshold, the units are called: Threshold Logic Units (TLU)

2 Lect_10_Mathematica.nb

step[x_, theta_] := If[x<theta,-1,1];
TLU[f_] = step[w.f,theta];

The math is simpler, if we assume the threshold to be zero, and then augment the inputs with one more input that is always
on. Here is a two input TLU, in which we augment it with a third input that is always 1 and whose weight is -theta:

w = {w1,w2};
f = {f1,f2};
waug = {w1,w2,-theta};
faug = {f1,f2,1};
Reduce[w.f==theta]
Reduce[waug.faug==0]

f1 == 0.8 - 1.6 f2

f1 == 0.8 - 1.6 f2

So the 3-input augmented unit computes the same inner product as 2-input unit with arbitrary threshold. This is a standard
trick that is used often to simplify calculations and theory. We will use it later in our study of the Hopfield network.

Perceptron (Rosenblatt, 1958)

The original perceptron models were fairly sophisticated. There were several layers of TLUs. In one early model (Anderson,
page 217), there was:

1. An input layer or retina of sensory units

2. Associator units with lateral connections and

3. Response units, also with lateral connections.

Lateral connections between response units functioned as a "winner-take-all" mechanism to produce outputs in which only
one response unit was on. So was the output a distributed code of the desired response?

The Perceptron in fact is a cartoon of the anatomy between the retina (if it consisted only of receptors, which is does not),
the lateral geniculate nucleus of the thalamus (if it had lateral connections, which it does not seem to have) and the visual
cortex (which in fact does send feedback to the lateral geniculate nucleus, and does have lateral inhibitory connections).

But with feedback from response to associator units, and the lateral connections, Perceptrons of this sort are too complex to
draw general theoretical conclusions about what they can compute and what they can learn. In a curious parallel, and long
standing mystery in visual physiology, is the function of the feedback from cortex to thalamus.

The Simplified perceptron removes the feedback and the lateral connections. So in a sense, there is only one input layer of
neural TLU elements that receive inputs and send their outputs.

What can the simplified perceptron do? Let's look at a single TLU.

Lect_10_Mathematica.nb 3

Linear separability

à A two-input simplified perceptron

For a specific set of weights, the threshold defines a decision surface separating one category from another. For a two
dimensional input TLU, this decision surface is a decision line:

Solve[waug.faug==0,{f2}]

{{f2 -> -1.25 (-0.4 + 0.5 f1)}}

Or if we solve waug.faug==0 for f2 symbolically,

 -theta + f1 w1{{f2 -> -(--------------)}} ------------- w2

à Define equation for the decision line of a two-input simplified perceptron

Let's write a function for the decision line:

w1 = 0.5; w2 = 0.8; theta = 0.4;
decisionline[f1_,theta_]:= -((-theta + f1*w1)/w2)

à Simulate data and network response for a two-input simplified perceptron

Now we generate some random input data and run it through the TLU:

step[x_] := If[x>0,1,-1];
abovethreshold = Table[{x=Random[],y=Random[],

step[waug.{x,y,1}]},{i,1,20}];

We've made an array of 3-element vectors, in which each vector is: {x,y,TLUaug[{x,y}]}. TLUaug is our augmented TLU
with the third input set to 1, and weight theta.

Question: Why did we use

Table[{x=Random[],y=Random[], step[waug.{x,y,1}]},{i,1,20}],

 rather than

 Table[{Random[],Random[], step[waug.{Random[],Random[],1}]},{i,1,20}] above?

4 Lect_10_Mathematica.nb

à View the data and the responses

Let's read in the graphics package to use the special plot function called LabeledListPlot[]: and plot the outputs and
decision line in red.

<<Graphics`Graphics`
g1 = Plot[decisionline[f1,0.4],{f1,-0.25,1},

PlotStyle->{RGBColor[1,0,0]}, DisplayFunction->Identity];
g2 = LabeledListPlot[abovethreshold, DisplayFunction->Identity];
Show[g1,g2,DisplayFunction->$DisplayFunction];

-0.2 0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

-1
1

1

1

-1

1

1

1

1

1

1

1

1

1

11
1

1

1
-1

The red line separates inputs whose inner product with the weights exceeds a threshold of 0.4 (above) from those that do not
exceed.

à N-dimensional simplified perceptron (TLU network)

 For a three dimensional input TLU, this decision surface is a plane:

w1 = 0.5; w2 = 0.8; w3 = 0.2; theta = 0.4;
w = {w1,w2,w3,-theta};
f = {f1,f2,f3,1};
Solve[w.f==0,{f3}]

{{f3 -> -5. (-0.4 + 0.5 f1 + 0.8 f2)}}

Lect_10_Mathematica.nb 5

Plot3D[-5.*(-0.4 + 0.5*f1 + 0.8*f2), {f1,-2,2},{f2,-2,2}];

-2
-1

0
1

2-2

-1

0

1

2

-10

0

10

-2
-1

0
1

2

For an n-dimensional input TLU, this decision surface is a hyperplane with all the members of one category falling on one
side, and all the members of the other category falling on the other side.

The hyperplane provides an intuition for the TLU's limited classification capability.

Perceptron learning rule
A classic perceptron learning rule (that can be proved to converge) is as follows:

If the classification is correct, don't change the weights:

Clear[w,f,c];
w = {w1,w2,-theta}; f= {f1,f2,1};
nextW = w;

Suppose the classification is incorrect AND the response should have been +1. Instead the output was -1 because the inner
product was less than zero. We change the weights to improve the chances of getting a positive output next time that input
occurs by adding a positive fraction (c) of the input to the weights:

nextw = w + c f;

Note that the new weights increase the likelihood of making a correct decision because the inner product is bigger than it
was, and thus closer to exceeding the zero threshold:

6 Lect_10_Mathematica.nb

Simplify[nextw.f - w.f]

 2 2c (1 + f1 + f2)

In general, nextw.f > w.f, because nextw.f - w.f = c f.f,

and c f.f >= 0.

If the classification is incorrect AND the response should have been -1, change the weights by subtractinga fraction (c) of
the incorrect input from the weights. The new weights decrease the likelihood of making a correct decision because the
inner product is less, and thus closer to falling below threshold. So next time this input would be more likely to produce a -1
output.

nextw = w - c f;
Simplify[nextw.f - w.f]

 2 2-(c (1 + f1 + f2))

Note that the inner product nextw.f must now be smaller than before because

nextw.f < w.f and c f.f >= 0, as before.

Demonstration of perceptron classification (Problem Set 3)
In the problem set you are going to write a program that uses a Perceptron style threshold logic unit (TLU) that learns to
classify two-dimensional vectors into "a" or "b" types. The unit will have three inputs: {1,x,y}, where x and y are the
coordinates of the data to be classified. The first component, 1, is the above "trick" used to incorporate the threshold into
the weight vector. So three weights will have to be learned: {w1,w2,w3}. It may help to know something more about
Conditionals in Mathematica.

à Conditionals

You have seen how to generate threshold functions using rules. But you can also use conditional statements. For example
the following function returns x when Sin[2 Pi x] < 0.5, and returns

-1 otherwise:

pet[x_] := If[Sin[2 Pi x] <0.5, x,-1];

One can define a function over three regions using Which[]. Which[test1, value1, test2,value2,...] evaluates each testi in
turn, giving the value of the first one that is True:

Lect_10_Mathematica.nb 7

tep[x_] := Which[-1<=x<1,1,
 1<=x<2, x,
 2<=x<=3, x^2]

Plot[tep[x],{x,-1,3}];

-1 1 2 3

2

4

6

8

à Generation of synthetic classification data.

Suppose we generate 50 random points in the unit square, {{0,1},{0,1}} such that for the "a" type points,

 x^2+y^2 > bigradius^2 and for the "b" points,

 x^2+y^2 < littleradius.

Each pair of points has its corresponding label, a or b. Depending on the radius values (in this case, 0.25, 0.4), these patterns
may or may not be linearly separable because they fall inside or outside their respective circles.

8 Lect_10_Mathematica.nb

g3 = LabeledListPlot[Map[Take[#,-3]&,stuff],PlotRange->{{0,1},{0,1}},
AspectRatio->1];

0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

a

a

a

a

a
a

b

b

a

a

a

a

a
a

a

b

a

a

a

a

a

a

b

bb

a

b

b

a

a

a

a

a

a

b

a

a

a

a

b

a

a

a

a

a

a

a

b
a

a

Let's define a function that is -1 for x <0 and +1 for x>= 0 using the conditional If[].

threshold[x_] := If[x<0,-1,1];

à Perceptron learning algorithm

In the problem set you write a program that will run through the training pairs. Start off with a weight vector of: {-.3, -.05,
0.5}. If a point is classified correctly (e.g. as an "a" type), do nothing to the weights. If the point is actually an "a" type, but
is incorrectly classified, increment the weights in some proportion (e.g. c = 0.1) of the point vector. If a "b" point is
incorrectly classified, decrement the weight vector in proportion (e.g. c = - 0.1) to the values of coordinates of the training
point.

Note that you may have to iterate through the list of training pairs more than once

to obtain convergence--remember convergence is guaranteed for linearly separable data sets.

à Plots of discriminant line

Below we show a series of plots of how the weights evolve through the learning phase. After 150 iterations, percent correct
has improved, but still isn't perfect.

Lect_10_Mathematica.nb 9

0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

a

a

a

a
a

a

b
b

a

a

a

a

a
a

a

b

a

a

a

a

a

a
b

bb

a

b

b

a
a

a

a

a

a

b

a

a

a

a

b

a

a

a

a

a

a

a

b a

a

0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

a

a

a

a
a

a

b
b

a

a

a

a

a
a

a

b

a

a

a

a

a

a
b

bb

a

b

b

a
a

a

a

a

a

b

a

a

a

a

b

a

a

a

a

a

a

a

b a

a

10 Lect_10_Mathematica.nb

0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

a

a

a

a
a

a

b
b

a

a

a

a

a
a

a

b

a

a

a

a

a

a
b

bb

a

b

b

a
a

a

a

a

a

b

a

a

a

a

b

a

a

a

a

a

a

a

b a

a

0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

a

a

a

a
a

a

b
b

a

a

a

a

a
a

a

b

a

a

a

a

a

a
b

bb

a

b

b

a
a

a

a

a

a

b

a

a

a

a

b

a

a

a

a

a

a

a

b a

a

Lect_10_Mathematica.nb 11

0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

a

a

a

a
a

a

b
b

a

a

a

a

a
a

a

b

a

a

a

a

a

a
b

bb

a

b

b

a
a

a

a

a

a

b

a

a

a

a

b

a

a

a

a

a

a

a

b a

a

0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

a

a

a

a
a

a

b
b

a

a

a

a

a
a

a

b

a

a

a

a

a

a
b

bb

a

b

b

a
a

a

a

a

a

b

a

a

a

a

b

a

a

a

a

a

a

a

b a

a

12 Lect_10_Mathematica.nb

0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

a

a

a

a
a

a

b
b

a

a

a

a

a
a

a

b

a

a

a

a

a

a
b

bb

a

b

b

a
a

a

a

a

a

b

a

a

a

a

b

a

a

a

a

a

a

a

b a

a

0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

a

a

a

a
a

a

b
b

a

a

a

a

a
a

a

b

a

a

a

a

a

a
b

bb

a

b

b

a
a

a

a

a

a

b

a

a

a

a

b

a

a

a

a

a

a

a

b a

a

Lect_10_Mathematica.nb 13

0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

a

a

a

a
a

a

b
b

a

a

a

a

a
a

a

b

a

a

a

a

a

a
b

bb

a

b

b

a
a

a

a

a

a

b

a

a

a

a

b

a

a

a

a

a

a

a

b a

a

14 Lect_10_Mathematica.nb

0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

a

a

a

a
a

a

b
b

a

a

a

a

a
a

a

b

a

a

a

a

a

a
b

bb

a

b

b

a
a

a

a

a

a

b

a

a

a

a

b

a

a

a

a

a

a

a

b a

a

Perceptron Convergence Theorem (Anderson, p 222)

Limitations of Perceptrons (Minksy & Papert, 1969)
Inclusive vs. Exclusive OR (XOR)

Augmenting the input representation to solve XOR. A special case of polynomial mappings.

Perceptron with natural limitations:

Order-limited

Diameter-limited

Argument : Connectedness can't be solved with diameter-limited perceptrons.

Lect_10_Mathematica.nb 15

Future directions for non-linear regression and decision networks

à Widrow-Hoff and error back-propagation

Next time we will return to an alternative method for learning the weights in a linear network, with a view to understanding
a famous generalization to non-linear networks for both smooth and discrete function mappings, called "error back-
propagation".

à Support Vector Machines

Just within the last few years, there has been much recent interest Support Vector Machine learning. This is a technique
which in its simplest form provides a powerful tool for finding non-linear decision boundaries. A good source for this
actively growing area can be found here:

http://svm.first.gmd.de/

Examples in object recognition see Osuna et al. (1997) and:

http://www.mpik-tueb.mpg.de/people/personal/bs/svm.html#OR

References
Burges, C. J. C. . A Tutorial on Support Vector Machines for Pattern Recognition. , Bell Laboratories, Lucent Technologies.
To appear in Data Mining and Knowledge Discovery. http://svm.research.bell-labs.com/SVMdoc.html

Cherkassky, Vladimir S., Filip M. Mulier (1998) Learning from Data : Concepts, Theory, and Methods (Adaptive and
Learning Systems for Signal Processing, Communications and Control Series)

Grossberg, S. (1982). Why do cells compete? Some examples from visual perception., UMAP Module 484 Applications of
algebra nad ordinary differential equations to living systems, : Birkhauser Boston Inc., 380 Green Street Cambridge, MA
02139.

Osuna, E.; Freund, R.; Girosi, F. 1997. Training Support Vector Machines: An Application to Face Detection. CVPR'97.

ftp://ftp.ai.mit.edu/pub/cbcl/cvpr97-face.ps.gz

Poggio, T. (1975). On optimal nonlinear associative recall. Biological Cybernetics, 19, 201-209.

Vapnik, V. N. (1995). The nature of statistical learning. New York: Springer-Verlag.

© 1998 Daniel Kersten, Computational Vision Lab, Department of Psychology, University of Minnesota.

16 Lect_10_Mathematica.nb

