Introduction to Neural Networks
U. Minn. Psy 5038
Spring, 1998

Daniel Kersten

Lecture 4

I Review: The generic connectionist model of the neuron

m Review. Inlecture 3, will developed some Mathematica toolsto model Stage 1 and 2 of the generic
connectionist neuron. Listsare particularly important. Vectors are lists of scalars that will be used to
represent patterns of neural activity as well as synaptic weights of a neuron. Matrices are lists of vectors that
will be used to represent a collection of synaptic weights over many model neurons.

X1
Stage 1 Stage 2 Stage 3

Lect_4_ Mathematica.nb

A single neuron

m Stage 1: Vector dot product: Multiplying a vector of synaptic weights by a vector of input activities

In Mathematica, this linear weighted sum is written as a dot product:

w={wl, w2}; x = {x1, x2};
y = WX

I WI1x1 + w2x2
m Stage 2: The point non-linearity, squash functions.

lo
]

Y ou've already seen how to define your own function for the sigmoidal non-linearity, s{}.

I squash[x_] := N[1/(1 + Exp[-X])];

Another form for a squashing function which is popular among physicistsis:
| squash2[x_] := ArcTan[Xx];

The values of ArcTan[] range from -Pi/2 to +Pi/2:

| squash2[- I nfi nity]

Vs
2

We've used Mathematica 's symbolic capabilities to confirm the lower range. Now run the output through the squash

function:
| y=squash[w. X] ;

Below we'll add stage 3, the noise term.

Lect_4_ Mathematica.nb

m Optional Exercise: Plot squash[] and squash2[] on the same graph for values of x ranging from -5 to 5.

1
’}
-4 -2 2
-0,
-1

Either of the squashing functions can be used to model the small-signal compression and large signal saturation

characteristics of neural output.

A two-layer neural network

Let's put the pieces together and model a simple two-layer neural network. We model the pattern of input activity by
vector x with four input values, a4x4 set of synaptic weights by matrix W, and the output pattern by vector y.

m Stage 1: Multiplying a matrix of synaptic weightsby a vector of input activities

Y1 y2 ys

X1 X2 X3

Ya

Xa

Lect_4_ Mathematica.nb

In terms of Mathematica, let's assign positive random inputs and weights:

abl e[Randoni], {
abl e[Randon], {

-

j. 1,4}

X - -

{0.496035, 1.51142, 0.818805, 0.993001}

m Stage 2: Point non-linearity

Recall in lecture 2, we pointed out that scalar functions are by default listable, which means that squash[] will get applied
to each element of the vector W .x in turn. The output of atwo-layer generic neural network can be written very concisely:

I y = squash[W x]

I {0.621527, 0.819272, 0.693983, 0.72968}

m Optional Exercise

Definex and W to model atwo-layer neural network with 6 inputs and 2 outputs.

i Modeling noise: Generic neuron plus noise

We'd like to add a Stage 3 to our model of the neuron in which we take account of the noisiness of neural transmission.
For this, we need the notion of a probability distribution. We could develop the routines we need using basic Mathematica
functions. However, much of the work has been done for usin the Sandard Mathematica Packages. These packages have
to be read in when you need the function definitions they contain. Asa first approximation the maintained action potential
discharge can be modeled as a Poisson distribution. But to use the Poisson distribution in aMathematica model, you have
to read in the Statistics package Discr eteDistributions as shown below.

Statistics and stochastic processes

Statistical routines are useful for both theoretical aspects of modeling as well as for Monte Carlo smulations. So it is
worth alittle effort to get acquainted with some fundamental tools and definitions. Let's start by reading in one of the
statistics packages and defining a Poisson distribution with a mean of 50 (e.g. 50 spikes per second of a neuron).

Lect_4_ Mathematica.nb

m Discretedistributions

I <<Statistics D screteDistributions’

| pdi st = Poi ssonDi stri bution[50];
The probability distribution function is given by:

I PDF[pdi st , a]

I PDHPoissonDistribution(50), {3, 1, 2})

The output shows Mathematica's definition of the function. Y ou can obtain the mean, variance and standard deviation
(which isthe square root of the variance) of the distribution we've defined. Try it:

Mean[pdi st]
Vari ance[pdi st]
St andar dDevi at i on[pdi st]

What is your guess of the general relationship between the mean and variance for the Poisson distribution?

We are going to approximate the noisiness of neural discharge with aNormal or Gaussian distribution. The Gaussian
distribution is continuous, rather than discrete. It is afairly good approximation of a Poisson distribution for large values
of the mean. To model the Gaussian, we need to read in the following package:

m Continuousdistributions

| <<Statistics ContinuousDi stributions’
I ndi st = Normal Di stribution[0.5,.1];

Print[Mean[ndist],", ", Variance[ndist],", ",
St andar dDevi at i on[ndi st]]

05,0.01,0.1

A plot of the probability distribution function for this normal distribution looks like:

Lect_4_ Mathematica.nb

| Pl ot [PDF[ndi st, x], {x, -.25,1.5}, PlotRange->{0, 4}];

w

=N
R ONO WO D

©

-0.25 0.250.50.75 1 1.251.5

The cumulative distribution tells us the probability of x1 being less than x2:
| Pl ot [CDF[ndi st , x2], {x2, -. 25, 1. 5}];

1

0.8

0.2

-0.25 0.250.50.75 1 1.251.5

m Statistical Sampling

Having defined the normal distribution, how can we draw samples from it? In other words, can we simulate a processin
which wefill a hat with slips of paper in such away that the proportions for each value mimic what we obtain from a
theoretical distribution?

Most standard programming languages come with standard subroutines for doing pseudo-random number generation.
Unlike the Poisson or Gaussian distribution, these numbers are uniformly distributed--that is, the probability of being a
certain value is the same over the sampling range.

Thisislikefilling the hat with slips of paper where the number of dipsisthe same for each value.

Mathematica comes with a standard function, Random[] that enables us to generate random numbers that are uniform,
Poisson, Normal, depending on the argument. (There are some other possible distributions in the packages too, like the
ChiSquar eDistribution).

Lect_4_ Mathematica.nb

I ??Random

Random[] gives auniformly distributed pseudorandom Real in the range O to
1. Random[type, range] gives a pseudorandom number of the specified type, lying in the
specified range. Possible types are: Integer, Real and Complex. The default rangeisOto 1.
Y ou can give the range {min, max} explicitly; a range specification of max isequivalent to
{0, max}. Random([distribution] gives a random number with the specified statistical distribution.

AttributesfRandom] = {Protected}

I Randoni ndi st]

I 0.701706

Putting together stages 1, 2 and 3 together
We can do everything at once, producing the output of a generic neuron, with synaptic weightsw, neural noise with a

mean of 0.0 and std. dev. 0.1 to an input x:

w={21,-2,3};

ndi st2 = Normal Di stribution[O0.0,.1];

y[x1_] := N squash[w. x1] + Randon{ ndi st2]];
y[{2,3,0,1}]

I 0.911057

If we invoke the y[] function again, we get a different response:
| viez.5.0.0

I 0.890749

To sum up, the model you should have in mind isthat at any given timeinterval (which isimplicit in this continuous-
response, discrete-time model), the neuron computes the sum of its weighted inputs, and the output signal, y, isaspike
rate over thisinterval.

m Exercise

Suppose al the inputs except the first are clamped at zero. What does the response, y[{t,0,0,0}], ook like as a function of
x for various levels of noise?

Lect_4_ Mathematica.nb

Plot [y[{x, 0, O, 0}], {x, -2, 2},

Pl ot Range - «0, 2},

AxeslLabel - <«{"Input signal, x", "Frequency"}];

Frequency
2

1.75
1.5
1.25
1
0.75

-2 -1 1 2

| nput signal, x

Lect_4_Mathematica.nb 9

I vector operations and patterns of neural activity

m State space and state vectors.

m Inneura networks, we are often concerned with a vector whose components represent the activities of
neurons which are changing in time. So sometimes we will talk about state vector s.There isn't anything
profound about this terminology--it just reflects that we are interested in the value of the vector when the
systemisin aparticular state at timet. It is often very useful to think of an n-dimensional vector asapoint in
an n-dimensional space. This space is often referred to as state space. Suppose, we have a 3 neuron system.
We can describe the state of this system as a 3-dimensional vector where each component represents the
activity of the neuron. Further, suppose just for the sake of an example to visualize, the activities of the first,
second, and third neurons (i.e. components) of a 3-dimensional vector are given by: y = {Cod[t], Sin[t], t}.
We can use the Mathematica function, ParametricPlot3D[] to get a picture of how this state vector evolves
in time through state space:

Cear[y];

y[t_] := {Codt], Sin[t], Cog2t]};
ParametricPlot3D[y][t], {t,0,5}, AxesL abel->{" x" " y" " 2" };

ParametricPlot3D::ppcom :
Function y(t) cannot be compiled; plotting will proceed with the uncompiled function.

m Dimension of a vector.

Y ou can get the dimensionality of avector using Dimensiong][], or Length[].

10 Lect_4_ Mathematica.nb

v ={2.1, 3, -0.45 4.9};

Di nensi ons[v]

I {4}

Dimensiong], will give you the dimensions of amatrix, while Length[] tells you the number of elementsin the list. For
example,

I M= {{24,2}, {1,6,4}};

| Lengt h[M

| -
Try comparing Length[M] with Dimensiong/M].

m Transpose of a vector.

The transpose of a column vector is just the same vector arranged in arow. However, because of the way Mathematica
uses lists to represent vectors you don't have to distinguish between row and column vectors. The transpose of a vector X,

iswritten x . Y ou can see avector in column form by typing v//MatrixForm, or:

Mat ri xFor nj v]

21

-0.45
4.9

m Vector addition is accomplished by simply adding the components of each vector to make a new vector.
Note that the vectors al have the same dimension.

a =1{3,1,2};
b ={2,4,8};
c=a+b

(5, 5, 10}

Lect_4_ Mathematica.nb 11

Vectors can be multiplied by a constant. We saw an example of this earlier.

I2a

I {6, 2, 4}

m Metric length of a vector.

It is unfortunate terminology, but L ength[] does NOT give you the metrical length of the vector. In order to get the length
of avector, you calculate the Euclidean distance from the origin to the end-point of the vector. We get this by squaring
each component, adding up the squares, and taking the square root. First, we will do this using the Apply[] function,
where the Plus operation is applied to all the elements of the list. Note that the operation of exponentiation is"listable”,
that isit is applied to each element of the vector:

| an2
I 9,1, 4)
What isaa?

I N[Sqrt[Appl y[Plus, a"2]]]

I 3.74166

If you wish, you can define your own function to apply to the list. What we have just calculated is the square root of the
dot product or inner product of a with itself. The length of a vector a is often written as|a| in standard math notation. In
the next section, we use the inner or dot product to calculate the metric length of a vector.

m |nner product. To calculate the inner product of two vectors, you multiply the corresponding components
and add them up:

u = {ul, u2, us3, ud};
v = {vl,v2,v3, v4};
u.v

ulvl + u2v2 + u3v3 + udv4

Theinner product isaso called the dot product. Later we will see what is meant by outer product. The inner product
between two vectorsa and b is written either as:

a.bor[ab], or alb

Mathematica uses the dot notation.

12 Lect_4_ Mathematica.nb

One use of theinner product isto calculate the length of avector. a.a isjust the sum of the squares of the elements of a,
S0 gives us another way of calculating the length of avector.

| N Sgrt[a.a]]

I 3.74166
Let's define afunction that will return the length of avector, x:

I Vectorlength[x] := N Sqrt[x.x]]

m Projection. The dot product, a.b, isequal to:

|al [b] cos(angle between a and b)

In problem set 1, you calculate the output of alinear neuron model as the dot product between an input vector and a
weight vector. Both the weight and input lists can be thought of as vectorsin an n-dimensiona space. Suppose the weight
vector has unit length. Recall that you can normalize any vector to unit length by dividing by its length:

v =Vv/Sgrt[v.v] ;

Geometrically, we can think of the output of a neuron as the projection of the activity of the neuron input activity vector
onto the weight vector direction. Suppose the input vector is already perpendicular to the weight vector, then the output of
the neuron is zero, because the cosine of 90 degreesis zero. As you found or will find with the cross-correlator of Problem
Set 1, the further the input pattern is away from the weight vector, as measured by the cosine between them, the poorer the
"match” between input and weight vectors, and the lower the response.

Here are three lines of code that calculate the two-dimensional vector z in the direction of w, with alength determined by
"how much of x projectsin thew direction":

x = {1, 2};
w= N{2/Sgrt[5],1/Sqrt[5]}];
Z = (x.wW) w;

Lect_4_ Mathematica.nb

13

Show{ G aphi cs[{Line[{{O0,0}, x}],
Line[{{0,0}, z}],
{Dashi ng[{0.03,0.03}], Line[{x, z}] },
Text [Font Forn] "w', {" Hel veti ca-Bol d", 18}], w,
Text [Font For n] "x", {" Hel veti ca-Bol d", 18}], X,
Text [Font Forni "z", {" Hel veti ca-Bol d", 18}], z
{ Absol ut eThi ckness[3], Line[{{0,0}, w] }

H,
Axes->True, AspectRatio->1

0.250.50.75 1 1.251.5

m Angle between two vector s and orthogonality: Similarity measur e between patterns

Often we will want some measure of the similarity between two patterns of neural firings. Aswe have just seen, one
measure of comparison is the degree to which the two state vectors point in the same direction. The cosine of the angle
between two vectors is one possible measure:

cosine[x_,y] := x.y/(Vectorlength[x] Vectorlength[y])
cosi ne[a, b]
I 0.758175

Note that if two vectors point in the same direction, the cosine of the angle between themis 1.

{2, 1,3, 6};
{6, 3, 9, 18};
osi ne[a, b]

a
b
c

14 Lect_4_ Mathematica.nb

Try verifying that w and z from the previous section point in the same direction.

If two vectors point in the opposite directions, the cosine of the angle between them is-1:

a={-2,-1,-3,-6};
b ={6 3, 9, 18};
cosi ne[a, b]

| -

Two vectors may point in the same direction, but could be quite different because they have different lengths. Another
measure of similarity is the length of the difference between two vectors:

I Vectorl ength[a - b]

I 28.2843

m Orthogonality. The case where vectors are at right angles to each other is an important special casethat is
worth spending alittle time on. Consider an 8-dimensional space. One very familiar set of orthogonal
vectors is the following:

ul = {1,0,0,0,0,0,0,0}:
u2 = {0,1,0,0,0,0,0,0}:
u3 = {0,0,1,0,0,0,0,0}:
u4 = {0,0,0,1,0,0,0,0};
us = {0,0,0,0,1,0,0,0};
u6 = {0,0,0,0,0,1,0,0};
u7 = {0,0,0,0,0,0,1,0}:
us8 = {0,0,0,0,0,0,0,1}:

Each vector has unit length, and it is easy to see just by inspection that the inner product between any two is zero. On the
other hand, here is another set of 8 vectorsin 8-space for which it is not immediately obvious that they are all orthogonal.
These vectors are called Walsh functions:

vi={1, 1, 1, 1, 1, 1, 1, 1};
v2 = {1,-1,-1, 1, 1,-1,-1, 1};
v3 = {1, 1,-1,-1,-1,-1, 1, 1};
vd = {1,-1, 1,-1,-1, 1,-1, 1};
v6 = {1, 1, 1, 1,-1,-1,-1,-1};
v6 = {1,-1,-1, 1,-1, 1, 1,-1};
v7 = {1, 1,-1,-1, 1, 1,-1,-1};
v8 = {1,-1, 1,-1, 1,-1, 1,-1};

Y ou can calculate the inner products between any two, and you will find out that they are all zero. Note that with the first
set of vectors, {u;}, you can tell which vector it isjust by looking for where the 1 is. For the second set, {v;}, you can't tell
by looking at just one component. For example, the first component of al of the Walsh functionshasa 1. Y ou have to

Lect_4_ Mathematica.nb 15

look at the pattern to tell which Walsh function you are looking at.

Suppose for the moment that we want to assign meaning to each of the patterns--each pattern is a code for some thing, like
"grandma Tompkins', "grandma Wilke", and so forth. If we use the u's, then we could look for the one neuron that lights
up to find out which grandmait is representing--then neuron activity represented, for example, by the third element of the
pattern could mean "grandma Wilke". This strategy wouldn't work if we encoded a collection of grandmothers using the
v's. Thev's give us a simple example of what is sometimes referred to as adistributed code. The w's are examples of a
grandmother cell code. The reason for this obscure terminology can be traced to earlier debates on whether there may be
single cellsin the brain whose firing uniquely determines the recognition of one's grandmother.

m Orthonormality. The Walsh set is orthogonal, but they are not of unit length. We have already seen some of
the advantages of working with unit length vectors. The general issue of normalization comes up all the time
in neural networks both in terms of limiting overall neural activity, and limiting synaptic weights. So it is
sometimes convenient to normalize an orthogonal set, producing what is known as an orthonormal set of
vectors:

vl/ Vectorl engt h[v1];
v2/ Vect orl engt h[v2] ;
v3/ Vect orl engt h[v3] ;
v4/ Vect or | engt h[v4] ;
v5/ Vect or | engt h[v5] ;
v6/ Vect or | engt h[v6] ;
v7/Vectorl ength[v7];
v8/ Vect or | engt h[v8] ;

53555508

i Vector representations, linear algebra

Theissue of how information is to be represented is fundamental in the information sciences generally, aswell asfor
neural network theory. A pattern of activity over a set of neuronsis presumed to mean something, and there are different
ways of coding the same meaning. But different codes have different properties. A code may not be sufficient to uniquely
code all the possible things we need to represent. A code could be redundant and have more than one way of representing
the same thing. This section continues with our review of the basics of vector and linear algebra by going alittle more
deeply into the subject. The pay-off will be some mathematics that provides intuition about issues of neural representation.
Y ou can think of thisas afirst lesson in the "psychology of linear algebra’.

m Basis sets

It is pretty clear that given any vector whatsoever in 8-space, you can specify how much of it gets projected in each of the
eight directions specified by the unit vectorsvl, v2, ...v8. But you can also build back up an arbitrary vector by adding up
all the contributions from each of the component vectors. This is a consequence of vector addition and can be easily seen
to betruein 2 dimensions. We can verify it ourselves. Pick an arbitrary vector g, project it onto each of the basis vectors,
and then add them back up again:

| g ={26,1,7, 11,4,13, 29}

16 Lect_4_ Mathematica.nb

‘ (g.ul) ul + (g.u2) u2 +(g.u3) u3 +(g.u4) ud +
(g.u5) u5 +(g.u6) ué +(g.u7) u7 +(g.u8) u8

I {2,6,1, 7,11, 4, 13, 29}

m Exercise

What happens if you project g onto the normalized Walsh basis set defined by {w1,w2,...} above, and then add up all 8
components?

‘ (g.wl) wi + (g.w2) w2 +(g.w3) w3 +(g.w4) w4 +
(g.-wh) Wb +(g.w6) we +(g.wr) w/ +(g.wd) w8

The projections, g.u; are sometimes called the spectrum of g. This terminology comes from Fourier basis set used in

Fourier analysis. A discrete version of a Fourier basis set is similar to the Walsh set, except that the elementsfit asine
wave pattern, and so are not binary-valued.

The orthonormal set of vectors we've defined above is said to be complete, because any vector in 8-space can be
expressed as a linear weighted sum of these basis vectors. The weights are just the projections. If we had only 7 vectorsin
our set, then we would not be able to express any 8-dimensional vector in terms of this basis set. The seven vector set
would be said to beincomplete. A basis set which is orthonormal and complete is very nice from a mathematical point of
view. Another bit of terminology is that these seven vectors would not span the 8-dimensional space. But they would span
some sub-space, that is of smaller dimension, of the 8-space.

There has been much interest in describing the effective weighting properties of visual neuronsin primary visual cortex of
higher level mammals (cats, monkeys) in terms of basis vectors. Oneissueisif theinput (e.g. animage) is projected (viaa
collection of receptive fields) onto a set of neurons, isinformation lost? If the set of weights representing the receptive
fields of the collection of neurons is complete, then no information islost.

Lect_4_ Mathematica.nb 17

m Linear dependence

What if we had 9 vectorsin our basis set used to represent vectors in 8-space? For the U's, it is easy to see that in a sense
we have too many, because we could express the 9th in terms of a sum of the others. This set of nine vectors would be said
to belinearly dependent. A set of vectorsis linearly dependent if one or more of them can be expressed as alinear
combination of some of the others.

Theorem: A set of mutually orthogonal vectorsis linearly independent.

However, noteit is quite possible to have a linearly independent set of vectors which are not orthogonal to each other.
Imagine 3-space and 3 vectors which do not jointly lie on aplane. This set is linearly independent.

If we have alinearly independent set, say of 8 vectors for our 8-space, then no member can be dropped without alossin
the dimensionality of the space spanned.

It is useful to think about the meaning of linear independence in terms of geometry. A set of three linearly independent
vectors can completely span 3-space. So any vector in 3-space can be represented as a weighted sum of these 3. If one of
the membersin our set of three can be expressed in terms of the other two, the set is not linearly independent and the set
only spans a 2-dimensional subspace. That is, the set can only represent vectors which lay on a plane in 3-space. This can
be easily seen to be true for the set of u's, but isalso true for the set of v's.

m Thought exercise

Suppose in asimple neural network, there are three inputs feeding into three neurons in the simple linear network such as
defined at the beginning of thislecture. If the weight vectors of the three neurons are not linearly independent, do we lose
information?

i Linearity, real neural networks, and what's up next time?

From a computational standpoint, the squashing function has both advantages and disadvantages. It is what makes our
neural network model non-linear, and as we will see later, this non-linearity enables networks to compute functions that
can't be computed with alinear network. On the other hand, non-linearities make the analysis complicated. In fact, there
are cases for which most of the neural activities are in the mid-range of the squashing function, and here one can
approximate the network as a purely linear one--just matrix operations on vector inputs, and the analysis becomes
relatively smple.

Compared to the complexity of real neurons and networks, assuming linearity might seem to be just too simple. But we
will seein the next lecture, that alinear model can be quite good model for some biological subsystems. We will apply the
techniques of linear vector algebrato model a network discovered in the visual system of the horseshoe crab.

© 1998 Daniel Kersten, Computational Vision Lab, Department of Psychology, University of Minnesota.

