
Introduction to Neural Networks
U. Minn. Psy 5038
Spring, 1998

Multi-layer non-linear networks
Gradient descent: Learning by error backpropagation

Introduction to multi-layer nets
For linear networks, no computational power is gained by having extra layers:

y1 := W0.y0;
y2 := W1.y1;

is equivalent to:

y2 := W1.(W0.y0) := W1.W0.y0 := W3.y0;

where W3 is just another matrix. However, if the inner product is followed by a non-linear transformation, then 
concatenating layers of neural elements is no longer trivial:

y2 :=  f[W1.f[(W0.y0)]];

where f[], for example, is a sigmoid:

f[x_] := 1/(1+Exp[-x]);

As we will see later, it can be important for theoretical reasons, to have a non-linearity which is smooth enough to be 
differentiable:

Df[x_] := D[f[t],t] /.t->x

Df[x]

      1-------------------------  x       -x 2E  (1 + E  )



Note that the derivative has a particularly simple expression in terms of f[x], which you can verify with Simplify[Df[x]-h[
x]]:

h[x_] := f[x](1-f[x]);

Here is a plot of the sigmoid and its derivative:

Plot[{Df[x],f[x]},{x,-3,3}];

-3 -2 -1 1 2 3

0.2

0.4

0.6

0.8

OK, so suppose we have a multi-layer network with inputs y0. The output of the first layer is: 

y1 = f[u1] = f[W1.y0]. The output of the second layer is: y2 = f[u2] = f[W2.y1]. And so forth.

2 Lect_12_Mathematica.nb



y1
0 y2

0 y3
0

+ + +

f f f
u1

1 u2
1 u3

1

y1
1 y2

1 y3
1

+ + +

f f f
u1

2 u2
2 u3

2

y1
2 y2

2 y3
2

w
11

2 w
21

2

+ + +

f f f
u1

3 u2
3 u3

3

y1
3 y2

3 y3
3

w11
3 w

21
3

w
11

1 W1

W2

W3

Dwij
l = -h

¶E2

¶wij
l

Lect_12_Mathematica.nb 3



The problem is how to assign the weights? For any complex system that is required to achieve a target goal, for the system 
to work, each component must contribute towards the goal. If the goal is not met, one has to figure out which component 
needs to be fixed. If the goal is met, each component contributed something towards the goal. How does one assign the 
credit for success or failure to a component? This problem is called the credit-assignment problem..

In particular, for the above multi-layer network, how do we adjust the weights in a way appropriate for learning a given 
input/output relation?

Backpropagation algorithm
We can approach the problem in the same way as we did for the linear network. Calculate an error term which is a function 
of the weights (with parameters determined by the input/output pairs), and then adjust the weights in such a way as to move 
down the error surface. 

I won't go through the derivation here. It is complex mainly because of having to keep track of lots of indices as the chain 
rule from calculus is applied. 

Here is a summary of the algorithm that results.

1. Initialize the weights to small random values

2. Pick a pattern from the input output collection, say the pth pattern: {xp,tp}: Calculate a delta term (analogous to the 

Widrow-Hoff rule) for the output layer L:

¶i
L = ti

p - yi
L x p( )( ) f©uiL( )

3. Propagate the errors back through the layers:

¶i
l = f©ui

L( ) ¶k
l +1

k=1

N

å wki
l +1          l = L -1,...,1

4. Calculate weight adjustments and update.

Dwij
l = h¶ i

ly j
l -1

5. Repeat steps 2 to 4 until convergence.

One can accumulate the weight adjustments for each training pair, and then update them all at once. As we discussed in the 
previous lecture on the Widrow-Hoff rule, this is true gradient descent on the error surface defined by the entire training 
ensemble.

(Dwij
l ) p = h¶i

lyj
l -1

4 Lect_12_Mathematica.nb



Dwij
l = (Dwij

l )p
p=1

M

å
In practice, updating the weights after each training pair often works better. The reason is that by randomly sampling a 
training pair, the "descent" may actually climb the global error function defined by the entire set. As we will see later with 
the Boltzmann machine, occasional climbing is useful to avoid local minima.

Backprop simulation example: XOR
It is well-known that with appropriate weights, a 3 layer net with 3 hidden units can solve the XOR problem. But this is still 
a tough problem to learn, mainly because it requires that two very different inputs map to the same output. Let's try learning 
the weights.

Reading in packages

So far, we've only used standard packages that are part of the Mathematica  package. 

For these exercises, we will use a publicly available package written by James A. Freeman which can be downloaded from: 

http://www.mathsource.com/cgi-bin/MathSource/Publications/BookSupplements/Freeman-1993/0205-906

Different computer systems have different ways of handling directory structures. You can find out where your current 
default directory is by typing:

Directory[]

DT-4110AV-1:Applications:Programming:Mathematica 2.2.2

Then you can set your default directory (for example) to read custom packages, or to save your data in a particular place, e.g.
:

SetDirectory["Macintosh HD:Lect_12"]

<<Backpropagation.m

Lect_12_Mathematica.nb 5



Standard backprop

We will first try a straightforward implementation of the algorithm described above , called bpnStandard[], which is in  
Backpropagation.m.  You can open up the package and see how this and other functions are defined.  But we replicate it 
here to show that the basic operations of error backpropagation are rather straightforward. You don't have to execute the 
following function because if you've read it in, it is defined in Backpropagation.m.

à The bpnStandard backprop function

bpnStandard[inNumber_,hidNumber_,outNumber_,ioPairs_,eta_,numIters_]  :=

  Module[{errors,hidWts,outWts,ioP,inputs,outDesired,hidOuts,   outputs, outErrors,outDelta,hidDelta},

    hidWts = Table[Table[Random[Real,{-0.1,0.1}],{inNumber}],{hidNumber}];

    outWts = Table[Table[Random[Real,{-0.1,0.1}],{hidNumber}],{outNumber}];

  errors = Table[

                                      (* select ioPair *)

    ioP=ioPairs[[Random[Integer,{1,Length[ioPairs]}]]];

    inputs=ioP[[1]];

    outDesired=ioP[[2]];

                        (* forward pass *)

    hidOuts = sigmoid[hidWts.inputs];

    outputs = sigmoid[outWts.hidOuts];

                        (* determine errors and deltas *)

    outErrors = outDesired-outputs;

   outDelta= outErrors (outputs (1-outputs));

¶i
L = ti

p - yi
L x p( )( ) f©uiL( )

   hidDelta=(hidOuts (1-hidOuts)) Transpose[outWts].outDelta;

                        (* update weights *)

¶i
l = f©ui

L( ) ¶k
l +1

k=1

N

å wki
l +1          l = L -1,...,1

   outWts += eta Outer[Times,outDelta,hidOuts];

   hidWts += eta Outer[Times,hidDelta,inputs];

6 Lect_12_Mathematica.nb



Dwij
l = h¶ i

ly j
l -1

(Note the C-style notation: x += a, is the same as: x = x + a)

                           (* add squared error to Table *)

       outErrors.outErrors,{numIters}];  (* end of Table *)

 Return[{hidWts,outWts,errors}];

 ];     

à Running the algorithm

We will first try a standard backpropagation network with 2 input units, 3 hidden layer units, and 1 output unit. The learning 
constant eta, we will set to 5. And let's try it for 1500 iterations.

bpnStandard[] expects a list with the input/output pairs set up as follows (for an XOR training set).

ioPairsXOR = { {{0.1,0.1},{0.1}}, {{0.1,0.9},{0.9}},
{{0.9,0.1},{0.9}}, {{0.9,0.9},{0.1}} };

Timing[outs=bpnStandard[2,3,1,ioPairsXOR,5,1500];]

{33.5833 Second, Null}

Did the net converge? No. The errors wiggle all over and never settle down near zero.

ListPlot[outs[[3]],PlotJoined->True];

200 400 600 800 1000 1200 1400

0.1

0.2

0.3

0.4

We can see specifically where it is failing by calling bpnTest[]:

Lect_12_Mathematica.nb 7



bpnTest[outs[[1]],outs[[2]],ioPairsXOR];

 Output 1 = {0.204165} desired = {0.1} Error = {-0.104165}
 Output 2 = {0.762727} desired = {0.9} Error = {0.137273}
 Output 3 = {0.813478} desired = {0.9} Error = {0.0865222}
 Output 4 = {0.668159} desired = {0.1} Error = {-0.568159}
Mean Squared Error = 0.0899962

Improving the standard algorithm by preventing overlearning of certain patterns

The above network had a hard time learning the fourth pattern. Even with more iterations, you may discover the network to 
be stuck in a local minimum of the error function. 

You could try more units in the hidden layer. This probably won't help much.

One trick to improve the odds of convergence is avoid over-learning certain patterns. The function bpnMomentumSmart 
sets a maximum acceptable error for a given pattern to 0.1, and then if the error is less than that for a given iteration, the 
weights are not updated. The idea is to concentrate more on learning the associations where the net shows some obstinance. 
(This network also uses a momentum term, the weight of this term is determined by alpha, which below is set to 0.9. 
Momentum is discussed below)

But you have to be lucky. I tried the following several times, before I hit it:

8 Lect_12_Mathematica.nb



outs={0,0,0,0};
Timing[
outs=bpnMomentumSmart[2,3,1,ioPairsXOR,2.0,0.9,1300];]

New hidden-layer weight matrix: 
{{-0.937564, -1.09841}, {-9.95589, 3.85642}, {3.79034, -10.1737}}
New output-layer weight matrix: 
{{-13.2328, 6.06398, 6.04958}}
 Output 1 = {0.151955} desired = {0.1} Error = {-0.0519553}
 Output 2 = {0.904261} desired = {0.9} Error = {-0.00426053}
 Output 3 = {0.865767} desired = {0.9} Error = {0.034233}
 Output 4 = {0.144143} desired = {0.1} Error = {-0.0441427}
Mean Squared Error = 0.0014595

200 400 600 800 1000 1200

0.05

0.1

0.15

0.2

0.25

0.3

{25.7667 Second, Null}

Momentum

A standard modification to backprop that typically has a significant effect on learning speed is a momentum term. The idea,
as the name suggests, is to keep the weight changes moving in about the same direction that they have been going. For 
example, for standard backprop, the hidden units were updated as:

hidWts += eta Outer[Times,hidDelta,inputs];

With momentum, the weights are updated in the same way except that alpha times the previous weight update is added in:

hidLastDelta = 
eta Outer[Times,hidDelta,inputs]+ alpha hidLastDelta;
hidWts += hidLastDelta;

The momentum term was included in bpnMomentumSmart[].

Lect_12_Mathematica.nb 9



à Optional exercise

Can you find a learning sequence which improves the odds of standard backpropagation finding a solution to the XOR 
problem? 

References
http://www.mathsource.com/cgi-bin/MathSource/Publications/BookSupplements/Freeman-1993/0205-906

Freeman, J. A. (1994). Simulating Neural Networks with Mathematica . Reading, MA: Addison-Wesley 

Publishing Company.

© 1998 Daniel  Kersten,  Computational  Vision Lab, Department  of Psychology,   University  of Minnesota.

10 Lect_12_Mathematica.nb


